
N C T · A U G U S T 2022 
 
 

7 

F EAT U R ED AR T I C L E 
 	

	

	
	

	

H o w  D e e p  L e a r n i n g  R e v o l u t i o n i z i n g  
M o b i l e  A u t o m a t i c  B l o o d  P r e s s u r e  
M o n i t o r i n g  

	
	

	

	

	

	

	

	

	

The	Covid-19	pandemic	has	directly	affected	

thousands	of	lives.	The	longer-term	effects	of	
COVID-19	are	already	beginning	to	emerge:	the	
behavioral	health	toll	of	anxiety	and	depression	
related	to	the	virus	itself,	which	leads	to	changing	
our	lifestyle	to	the	new	normal.	Even	though	
Covid-19	became	the	number	one	cause	of	death	
in	the	US	several	times,	we	actually	faced	a	long	
global	health	burden	of	cardiovascular	diseases	

(CVDs).	CVDs	have	been	a	worldwide	number	
one	killer	that	kills	more	people	than	Covid-19	
and,	in	ordinary	years,	more	than	all	other	
infectious	diseases	accumulated.	In	2600-2700	
BCE,	during	the	reign	of	the	Yellow	Emperor	of	
China,	the	wellness	of	human	vital	organs	was	
used	to	be	assessed	by	the	pulse.	The	so-called	
‘hard	pulse	disease’	has	been	stated	as	one	of	the	

heart	conditions	where	the	pulse	hardens	due	to	
excessive	salt	intake	in	food.	People	diagnosed	
with	this	disease	were	treated	with	venesection	
and	bleeding	by	leeches	until	1733	when	the	
term	blood	pressure	(BP)	was	discovered,	and	
the	following	pathology	of	disease	related	to	it	
embarked	on	the	clinicians’	interest	[1].	In	the	

modern	era,	the	term	hard	pulse	disease	is	
mainly	known	as	hypertension	or	high	blood	
pressure.	It	is	a	leading	preventable	risk	factor	
for	premature	death	and	disabilities	caused	by		

	

	

	

	

	

	

	

	

	

	

	

CVDs.	BP	dynamics	are	affected	by	diets,	activities,	
emotional	states,	and	the	use	of	BP-lowering	
medication.	Changes	in	some	of	these	factors,	such	as	
increasing	BMI	and	stress	load,	can	elevate	the	BP;	in	
contrast,	medication	and	changes	in	lifestyle	may	
reduce	the	raised	BP.	Though	hypertension	can	be	

prevented,	thus	far,	people	are	still	doing	terribly	on	
BP	control	worldwide,	especially	in	low-and	middle-
income	countries	(see	Fig.	1)	[2].		Even	the	
awareness	of	having	high	BP	is	less	than	half	the	
time	of	the	total	sufferer.	This	escalates	the	number	
of	researchers	in	developing	a	comfortable	
continuous	non-invasive	BP	(CNIBP)	measurement	

system	for	users.	

	

	

Fig.	1	Most	people	with	hypertension	worldwide	do	not	have	it	

under	control.	
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BP	Measurement	Devices	

The	invasive	catheter	system	has	been	
considered	as	the	clinical	gold	standard	for	
measuring	continuous	BP.	This	system	is	
performed	by	physicians	or	specialized	nurses	for	
accurate	BP	monitoring	in	intensive	care	units	

(ICU).	On	the	other	hand,	this	method	is	prone	to	
infection	when	the	catheter	insertion	is	
performed.	Non-invasive	cuff-based	
sphygmomanometer	can	be	an	alternative	
method,	which	is	also	recommended	for	home	BP	
monitoring.	Although	users	can	do	self-
measurement,	users	have	to	follow	a	relatively	

strict	measuring	protocol	to	ensure	the	values	
predicted	are	accurate.	The	majority	(81.4%)	of	
the	914	tested	sphygmomanometers	exhibited	a	
measuring	error	that	fell	within	the	presently	
recommended	tolerance	of	±	3	mmHg.	Another	
drawback	is	that	this	device	does	not	allow	
continuous	measurement	and	the	procedure	
requires	time.	Both	invasive	and	cuff-based	

methods	are	impractical,	intermittent,	and	
uncomfortable	for	patients.	Thus,	CNIBP	systems	
are	expected	to	fuse	the	advantages	of	the	two	
existing	methods.	

	

Machine	learning-based	CNIBP	
Systems	
	

    Several	approaches	have	been	proposed,	and	
the	pulse	transit	time	(PTT)	feature	is	first	

utilized.	It	is	often	found	to	have	an	inverse	
proportional	relationship	with	BP.	By	definition,	
PTT	is	the	travel	time	between	the	aortic	valve	
opening	and	the	arrival	of	the	blood	flow	to	the	
distal	location,	which	can	be	derived	by	measuring	
the	time	difference	between	the	pulse	wave	
information	detected	by	two	sensors	apart.	There	
have	been	a	few	sensors	related	to	PTT	

assessment,	being	investigated	in	[3].	Based	on	
the	heaps	of	use	in	literature,	the	most	notable	
PTT	assessment	is	derived	by	calculating	the	time	
delay	between	the	R	peak	of	the	
electrocardiogram	(ECG)	signal	to	the	maximum	
slope	of	the	(PPG)	signal.		

	

	
	

	
	
	

At	the	same	time,	machine	learning	regression	
models,	i.e.	regression	tree,	random	forest,	support	
vector	machine	(SVM),	help	to	predict	the	BP	by	

combining	PTT	and	other	related	features	derived	
from	ECG	or	PPG	signals	[4,	5].	Nevertheless,	for	the	
overall	performance,	the	prediction	error	can	even	
be	significantly	reduced	using	deep	learning	
methods.	Deep	learning	has	a	better	ability	to	adapt	
to	represent	hierarchical	features	within	multiple	
layers.	We	have	proven	the	effectiveness	of	deep	

learning	techniques	compared	to	some	machine	
learning	algorithms	in	[6].	We	proposed	a	deep	long	
short-term	memory	(LSTM)	model	to	predict	SBP	
and	DBP	values	from	seven	features	including	PTT,	
heart	rate,	and	the	PPG	physiology-related	
information.	The	real-time	demo	of	this	model	can	be	
seen	in	Fig.	2.	

	

	
Fig.	1	Our	real-time	demo	program	

	

Deep	Learning-based	CNIBP	
Systems	using	PPG	signal	only	

	

To	accomplish	mobile	CNIBP	systems	is	a	
challenging	task.	Although	PPG	sensors	have	been	

widely	used	in	wearable	devices,	ECG	sensors	are	
still	exclusively	available	in	wearable	devices.	
Furthermore,	signal	retrieval	and	its	preprocessing	
are	the	other	tricky	part.	Signals	acquired	from	
smartwatches	commonly	appear	quite	different	from	
signals	acquired	from	clinical	devices	due	to	the	very	
small	frequency	rate	and	different	kinds	of	noise	that	
might	exist.	Thus,	a	different	preprocessing	

procedure	needs	to	be	conducted.	To	overcome	the	
impracticality	of	using	two	separate	sensors,	most	
CNIBP	system	developments	are	focusing	on	using		
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PPG	signals	only	to	predict	BP.	Our	initial	
approach	[7]	uses	a	deep	neural	network	(DNN)	
and	32	selected	features	from	the	PPG	signal	only,	
illustrated	in	Fig.	3.	Our	network	architecture	
contains	four	hidden	layers,	denoted	as	H1,	…,	H4.	

The	numbers	of	neurons	for	H1,	H2,	H3,	and	H4	
are	2048,	4096,	8192,	and	2048,	respectively.	The	
first	layer	contains	32	neurons,	corresponding	to	
the	number	of	our	features.	The	last	layer	includes	
two	neurons	for	SBP	prediction	and	DBP	
prediction.	

	
Fig.	2	The	deep	neural	network	(DNN)	architecture	

We	decided	to	adopt	the	fully	connected	neural	

network	as	our	regressor	since	it	is	easier	to	be	
implemented	in	wearable	devices.	The	model	
structure	is	clean	and	easier	to	understand	
compared	to	LSTM,	which	enables	software	
engineers	to	transfer	and	deploy	the	code	to	
wearable	devices.	Our	DNN	model	achieved	a	
mean	absolute	error	of	3.21	mmHg	and	2.23	
mmHg	for	SBP	and	DBP	prediction,	respectively.	

	 Commonly,	a	PPG	waveform	mainly	consists	of	
four	distinctive	features,	namely	foot,	systolic	
peak,	dicrotic	notch,	and	diastolic	peak,	as	shown	
in	Figure	1.	The	PPG	waveform	is	quite	simple	and	
straightforward	but	sometimes	is	not	informative.	
Frequently,	the	subject’s	age	affects	the	
distinctiveness	of	the	features,	such	as	dicrotic	
notch,	which	is	usually	hard	to	detect	in	older	

subjects,	illustrated	in	Fig.	4.	Therefore,	features	
based	on	dicrotic	notch	may	not	be	available	at	all	
times.	Accordingly,	we	began	to	focus	on	
developing	featureless-based	BP	estimation.	

	

	

	

	

	

	

	

	

	

	

Fig.	4	Waveform	variations	of	PPG	waveform	including	(a)	PPG	with	
distinct	features,	(b)	and	(c)	PPG	with	indistinct	and	almost	

nonexistence	dicrotic	notch	and	(d)	invisible	dicrotic	notch	with	

diastolic	duration	decays	faster	than	the	others	

	

Convolutional	Neural	Network	(CNN)	is	the	state-of-the-art	of	
automatic	feature	extraction	while	LSTM	is	an	effective	choice	
for	analyzing	time	series	data	with	an	ability	to	handle	long	
sequential	data.	We	proposed	a	two-hierarchical	model	
consisting	of	one-dimensional	CNN	combined	with	BiLSTM	

[8].	The	lower	hierarchy	carries	out	the	automatic	feature	
extraction,	and	the	upper	learns	the	temporal	relation	
between	the	features	resulting	from	the	lower	part,	as	
illustrated	in	Fig.	5.	

	

	

Fig.	5	The	1D	CNN-BiLSTM	network	architecture	

	

Although	it	did	not	outperform	our	DNN	model	in	BP	

prediction,	we	believe	that	in	the	future,	“end-to-
end”	training,	which	needs	no	prior	domain	
knowledge	in	the	loop,	will	become	more	popular	as	
the	amount	of	data	and	computational	resources	
increase.	The	transition	from	“feature-based”	to	
“feature-less”	signal	processing	will	be	a	paradigm	
shift	in	the	biomedical	signal	processing	domain	that	
can	also	save	a	lot	of	training	time.	

We	also	proposed	a	featureless-based	model,	
that	not	only	predicts	the	SBP	and	DBP	solely	but	
also	has	the	strong	learning	ability	to	estimate	the	
whole	shape	of	the	arterial	blood	pressure	(ABP)	
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	signal	[9].	The	input	of	the	proposed	model	is	a	
raw	PPG	signal	along	with	its	derivatives,	instead	
of	the	hand-crafted	feature	of	the	PPG.	This	model	
is	unimodal	and	consists	of	an	LSTM-based	

autoencoder.	Furthermore,	we	applied	transfer	
learning	by	first	training	our	autoencoder	to	
reconstruct	the	PPG	waveform	input.	Then,	we	
freeze	the	encoding	part	and	only	let	the	next	part	
be	trained	for	constructing	the	ABP	waveform	
afterward.	Taking	this	application	can	help	our	
network	to	learn	the	intermediate	waveform	
representations	explicitly.	The	training	flow	of	our	

model	is	illustrated	in	Fig.	6	

	

	

Fig.	6	LSTM-autoencoder	training	flow.	The	black	

dashed-box	indicates	an	encoder,	and	the	red	dashed-

box	indicates	a	decoder.	

	

The	model	provides	a	reasonably	accurate	and	
promising	result	over	many	subjects	being	
examined,	with	a	mean	absolute	error	of	4.05	
mmHg	and	2.41	mmHg	for	SBP	and	DBP	
prediction,	respectively.	Fig.	7	shows	the	ABP	

sequence	prediction	result	using	the	transfer	
learning	method,	which	has	a	high	resemblance	
to	the	observed	sequence	obtained	from	the	
source	dataset.	In	this	sense,	an	LSTM-based	
autoencoder	can	perceive	the	PPG	signal	
information	and	translate	it	to	the	corresponding	
ABP	signal.	

	

	

	

	

	

	

	

	

	

	

	

	

	
Fig.	3	Examples	of	ABP	prediction	results	from	the	proposed	model.	The	

circle	marks	indicate	SBP,	and	the	triangle	marks	indicate	DBP.	

	

BPEst	Application	
	

	
Fig.	4	Snapshot	of	BPEst	application	for	connecting	the	device	with	the	
smartwatch	

	

We	have	applied	our	best	model	to	mobile	
devices	as	an	alternative	to	the	CNIBP	system.	The	
application	will	start	working	once	the	smartphone	
has	been	connected	to	a	paired	smartwatch	that	has	
been	installed	with	the	same	application,	as	
illustrated	in	Fig.	8.	The	connection	time	is	less	than	

one	minute	and	the	smartwatch	will	start	its	PPG		
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sensor	and	send	the	data	to	the	smartphone	on	
the	fly.	After	the	smartphone	receives	the	data,	the	
waveform	of	PPG	will	be	shown	on	the	phone	
screen,	and	the	prediction	process	will	begin.	The	

prediction	result	will	be	shown	continuously	until	
the	user	disconnects	the	smartwatch	or	close	the	
app,	as	shown	in	Fig.	9.	The	prediction	result	will	
also	be	displayed	on	the	smartwatch	screen	with	a	
delay	time	of	less	than	one	second,	as	shown	in	
Fig.	10.	Now,	monitoring	BP	can	be	performed	
anywhere	and	anytime	using	the	technology	of	
deep	learning-based	mobile	BP	monitoring	

system.	

	

Conclusion	
	

Blood	pressure	control	is	very	important	
despite	being	neglected	by	many	people.	
Monitoring	BP	regularly	can	be	one	effort	that	
could	be	made.		Numerous	CINBP	system	has	been	
developed	as	deep	learning	emerges	as	a	robust	
technology	that	is	extremely	beneficial	in	
automatic	learning	and	prediction.	We	have	
developed	our	own	deep	learning	models	based	

on	LSTM,	DNN,	and	even	CNN.	Our	best	model	
achieved	a	similar	prediction	error	with	the	error	
tolerance	of	a	sphygmomanometer	and	applied	it	
to	mobile	and	wearable	devices	to	accomplish	a	
proper	mobile	BP	monitoring	system.	

	

	
Fig.	5	Snapshot	of	BPEst	application	showing	the	SBP	and	
DBP	prediction	

	

	
	
	
	

  

Fig.	6	Snapshot	of	BPEst	application	for	the	smartwatch	side	
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