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Abstract	
	

Image	and	video	restoration	as	a	
fundamental	low-level	vision	task	can	
significantly	improve	the	visual	quality	and	
benefit	a	lot	of	downstream	computer	vision	

tasks	(e.g.,	video	surveillance	and	satellite	
imagery).	However,	early	works	mainly	focus	on	
some	ideal	settings	that	strongly	limit	their	
applications.	Recent	years	have	witnessed	
increasing	interest	in	designing	restoration	
approaches	under	real-world	scenarios.	In	this	
article,	we	rethink	the	challenges	of	restoration	
deployment	from	an	industrial	perspective	and	

share	our	experiences	from	three	aspects:	
network	design,	model	training,	and	deployment	
environments.	According	to	those	thinking	and	
our	solutions,	we	conclude	the	current	progress	
of	restoration	tasks	and	point	out	some	future	
opportunities	that	we	will	focus	on.	

	

I.	 Industrial	Applications	of	
Restoration	
	

Image	and	video	restoration	aims	to	recover	
high-quality	content	from	its	degraded	
counterpart.	It	consists	of	many	low-level	vision	

tasks,	e.g.,	super-resolution,	inpainting,	light		

	

	

	

	

	

	

	

	

enhancement,	etc.	The	degradation	usually	varies	
between	those	tasks.	In	super-resolution,	it	could	be	
a	down-sampling	process	that	reduces	the	content	
resolution.	Specific	to	video	super-resolution,	
reducing	the	frame	rate	of	videos	in	temporal	
dimension	could	also	be	an	option	for	degradation.	

Moreover,	in	light	enhancement,	the	degradation	will	
be	exposure	adjustments.	Although	the	degradation	
is	varied,	those	tasks	share	the	same	optimization	
target	which	is	to	recover	the	high-quality	content	
and	improve	its	visual	quality.	Such	a	goal	
encourages	the	industry	to	deploy	those	methods	in	
real	scenarios	to	advance	user	experiences	(as	
shown	in	Fig.	1).	

With	the	development	of	high-definition	display	
devices	(e.g.,	8K	televisions)	in	recent	years,	there	is	
an	increasing	need	for	high-quality	content	to	
release	the	power	of	those	devices	and	bring	new	
visual	enjoyment.	However,	such	high-quality	
content	is	hard	to	access	due	to	the	limitation	of	
network	bandwidth	and	media	sources.	To	mitigate	
this	problem,	in	real	deployments,	restoration	

techniques	play	an	important	role	to	bridge	the	gap	
between	content	sources	and	display	devices.	
Specific	to	high-definition	television,	super-
resolution	and	frame	interpolation	techniques	are	
usually	adopted	to	align	the	spatial	and	temporal	
resolution,	respectively	[8],	[16],	[17].	From	the	user	
aspect,	restoration	techniques	could	also	benefit	and	
level	up	their	content	quality	during	the	image	and		
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video	capturing	and	retouching	[28],	[29].	User	
capturing	is	usually	subject	to	light	conditions	and	
camera	sensors	and	results	in	low-quality	content.	
With	the	help	of	restoration	techniques,	e.g.,	color	

enhancement	and	relighting	could	significantly	
improve	the	visual	quality	and	make	a	more	vivid	
illustration	[22].	

	

Fig.	1	Industrial	applications	of	restoration.	(a)	

Enhancing	content	quality	by	super-resolution	

techniques	for	high-definition	televisions.	(b)	

Improving	detection	accuracy	by	light	enhancement	
techniques	for	autonomous	driving.	

	

Except	for	the	remarkable	progress	of	the	
restoration	in	low-level	vision	applications	that	
aim	to	improve	visual	quality,	it	also	benefits	a	
broad	range	of	high-level	vision	tasks,	e.g.,	
recognition	and	detection	[10],	[19].	Specific	to	

the	industrial	scenarios,	in	video	surveillance,	
restoration	especially	for	super-resolution,	
deblur,	and	denoising	has	been	widely	used	[1],	
[33].	With	the	help	of	these	techniques,	the	
content	quality	could	be	recovered	with	more	
details	and	further	boost	the	accuracy	of	anomaly	
detection	and	face	verification,	etc.	In	other	
words	in	autonomous	driving,	restoration	

techniques	could	also	encourage	the	applications	
of	traffic	lane	detection	as	well	as	traffic	light	
classification	under	extreme	weather	conditions	
(e.g.,	the	foggy	weather)	[4].	By	equipping	the	
techniques	of	deraining	and	dehazing,	a	clearer	
scene	could	be	captured,	and	detailed	traffic	
information	could	be	analyzed	which	leads	to	a	
smarter	decision	of	the	control	system.	

Overall,	in	recent	years,	many	industrial	
applications	have	witnessed	the	power	of	
restoration	and	tried	to	deploy	it	in	their	
scenarios	to	further	boost	performance	or	reduce		

	

	

	

	

	

cost.	In	the	following	sections,	we	will	guide	the	
readers	to	see	the	challenges	of	restoration	
deployment	in	Sec.	II	and	introduce	our	industrial	
solutions	and	thinking	in	Sec.	III.	In	the	last,	we	will	

summarize	the	current	progress	and	point	out	some	
potential	opportunities	that	people	could	work	on	in	
the	future	in	Sec.	IV.	

	

II.	Industrial	Challenges	of	Restoration	

Even	though	some	restoration	methods	have	
already	been	successfully	deployed	in	real	industrial	
scenarios,	there	still	have	a	lot	of	challenges	that	
limit	these	methods	to	release	their	full	capacities	
[24],	[30].	

The	first	challenge	is	the	trade-off	between	

computational	costs	and	performance	
improvements.	In	real	industrial	scenarios,	slight	
computational	cost	increases	will	affect	other	
components	a	lot	(e.g.,	power	consumption,	and	
memory	cost).	How	to	design	specific	networks	that	
fit	the	industrial	requirements	and	achieve	a	good	
balance	between	the	costs	and	gains	will	be	the	most	
important	problem	[12].	

The	second	challenge	is	about	the	settings	and	
scenarios.	There	is	a	big	gap	between	research	
settings	and	industrial	scenarios.	For	example,	in	
image	super-resolution,	research	settings	usually	
take	bicubic	downsampling	as	its	only	degradation	
method	[2].	While	in	real	products,	such	scenarios	
could	be	very	complex	including	noise,	blur	as	well	
as	JPEG	compression	artifacts.	Directly	applying	

existing	research	methods	to	products	may	result	in	
visual	unpleasant	images	[9],	[34].	

The	last	challenge	is	the	hardware	deployment	
problems.	Restoration,	as	a	dense	prediction	task,	
usually	requires	more	resources	than	traditional	
high-level	vision	tasks	and	its	computational	cost	
highly	depends	on	its	input	resolution.	This	requires	
the	model	to	be	specially	designed	for	some	specific	
hardware	like	INT8	inference	for	NPU.	In	recent	

years,	more	and	more	industrial	companies	find	that	
designing	hardware-friendly	models	would	also	be	a	
challenging	but	of	great	potential	direction	in	
restoration	[3],	[20].	
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III. Industrial	Solutions	to	
Restoration	

   In	this	section,	we	will	introduce	some	of	our	
existing	solutions	to	the	above	three	challenges:	
network	design,	model	training	settings,	and	

hardware	deployment	environments.	
	

A. Network	Design	
        Convolutional	neural	network	(CNN)	has	
been	widely	used	in	computer	vision	tasks	and	
achieved	great	success	[5-7],	[11],	[23],	[31].	
However,	recent	works	on	Transformer	[21]	

further	improve	the	performance	by	a	large	
margin	[16],	[25],	[30],	[32].	This	is	achieved	by	
leveraging	the	long-range	dependency	between	
different	regions.	Specific	to	restoration,	such	a	
design	could	make	full	use	of	the	self-exemplar	
prior	to	input	images	and	produce	visually	more	
pleasant	results	than	CNN	based	methods	under	a	
fixed	computational	cost.	Motivated	by	this,	we	

propose	a	novel	Texture	Transformer	network	for	
image	Super-Resolution	(TTSR)	[26],	in	which	the	
LR	and	Ref	images	are	formulated	as	queries	and	
keys	in	a	Transformer,	respectively.	As	shown	in	
Fig.	2,	TTSR	consists	of	four	closely-related	
modules	optimized	for	image	restoration	tasks,	
including	a	learnable	texture	extractor	by	DNN,	a	
relevance	embedding	module,	a	hard-attention	

module	for	texture	transfer,	and	a	soft-attention	
module	for	texture	synthesis.	Such	a	design	
encourages	joint	feature	learning	across	LR	and	
Ref	images,	in	which	deep	feature	
correspondences	can	be	discovered	by	attention,	
and	thus	accurate	texture	features	can	be	
transferred.	Extensive	experiments	show	that	
TTSR	achieves	significant	improvements	over	

state-of-the-art	approaches	on	both	quantitative	
and	qualitative	evaluations.	

	
Fig.	2.	The	first	Transformer	based	image	super-resolution	

network	[26].	

	
	

	
	
	
	

To	extend	the	capability	of	TTSR,	we	further	
consider	the	temporal	information	in	video	super-

resolution	and	proposed	a	novel	Trajectory-aware	
Transformer	for	Video	Super-Resolution	(TTVSR)	
[15].	As	shown	in	Fig.	3,	we	formulate	video	frames	
into	several	pre-aligned	trajectories	which	consist	of	
continuous	visual	tokens.	For	a	query	token,	self-
attention	is	only	learned	on	relevant	visual	tokens	
along	spatial-temporal	trajectories.	Compared	with	

vanilla	vision	Transformers,	such	a	design	
significantly	reduces	the	computational	cost	and	
enables	Transformers	to	model	long-range	features.	
Experimental	results	demonstrate	the	superiority	of	
the	proposed	TTVSR	over	state-of-the-art	models,	by	
extensive	quantitative	and	qualitative	evaluations	in	
four	widely	used	video	super-resolution	
benchmarks.	

	
Fig.	3.	An	overview	of	our	proposed	trajectory-aware	transformer	
for	video	super-resolution	[15].	

	
B. Model	Training	Settings	

In	the	real	deployment	of	restoration	methods,	
there	is	a	large	gap	between	research	settings	and	
real-world	scenarios.	Directly	applying	those	
methods	may	result	in	visually	unpleasant	results.	

To	mitigate	this	problem,	we	propose	a	
Degradation-guided	Meta-restoration	network	for	
blind	Super-Resolution	(DMSR)	that	facilitates	
image	restoration	for	real	cases	[27].	As	shown	in	
Fig.	4,	DMSR	consists	of	a	degradation	extractor	
that	estimates	the	degradations	in	LR	inputs	and	
guides	the	restoration	networks	to	predict	

restoration	parameters	for	different	degradations	
on-the-fly.	Through	such	an	optimization,	DMSR	
outperforms	SOTA	by	a	large	margin	on	three	
widely	used	benchmarks.	
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Fig.4.	The	core	component	of	our	proposed	

degradation-guided	meta-restoration	network	for	blind	
super-resolution	[27].	

Compared	with	image	super-resolution,	real-
world	video	super-resolution	further	introduces	
compression	artifacts	[13].	To	attack	this	
challenge,	we	propose	a	novel	Frequency-

Transformer	for	compressed	Video	Super-
Resolution	(FTVSR)	that	conducts	self-attention	
over	a	joint	space-time-frequency	domain	[18].	As	
shown	in	Fig.	5,	we	first	divide	a	video	frame	into	
DCT	patches.	Then	we	study	different	self-
attention	schemes	and	discover	that	a	``divided	
attention''	which	conducts	a	joint	space-frequency	
attention	before	applying	temporal	attention	on	

each	frequency	band,	leads	to	the	best	video	
enhancement	quality.	Experimental	results	on	two	
widely	used	video	super-resolution	benchmarks	
show	that	FTVSR	outperforms	state-of-the-art	
approaches	on	both	uncompressed	and	
compressed	videos	with	clear	visual	margins.	

	
Fig.	5.	An	overview	of	our	proposed	frequency-

transformer	for	compressed	video	super-resolution	

[18].	

C. Hardware	Deployment	Environments	

        Recent	works	have	less	explored	the	
advantage	of	different	operations	on	real	
hardware.	Compared	with	matrix	multiplication	
operations	that	take	most	of	the	inference	time,	
addressing	operations	take	only	a	small	portion	of	

the	whole	computational	costs.	Motivated	by	this,		

	

	

	

	

	

we	propose	a	novel	learnable	context-aware	4-
Dimensional	LookUp	Table	(4D	LUT)	for	image	
enhancement	[14].	As	shown	in	Fig.	6,	we	first	
introduce	a	lightweight	context	encoder	and	a	

parameter	encoder	to	learn	a	context	map	and	a	
group	of	coefficients	for	LUTs,	respectively.	Then,	the	
context-aware	4D	LUT	is	generated	by	integrating	
multiple	basis	4D	LUTs	via	the	coefficients.	Finally,	
the	input	image	is	enhanced	by	feeding	into	the	
fused	context-aware	4D	LUT	with	the	context	map	
via	quadrilinear	interpolation.	With	such	a	design,	
most	computational	costs	are	spent	on	the	

addressing	operation	which	is	super-fast	on	real	
hardware.	Experimental	results	demonstrate	that	
our	proposed	4D	LUT	outperforms	other	state-of-
the-art	methods	in	widely	used	benchmarks	while	
keeping	a	real-time	speed	on	most	low-end	devices.	

	
Fig.	6.	A	system	overview	of	our	proposed	4-dimensional	lookup	table	
for	image	enhancement	[14].	

IV. Industrial	Opportunities	for	
Restoration	

Despite	the	remarkable	progress	in	restoration	
deployments	in	industrial	scenarios,	there	is	still	a	
long	way	to	go.	In	the	future,	two	potential	

opportunities	have	been	witnessed	to	break	the	gap	
and	take	a	step	further	in	this	area.	The	first	is	the	
restoration	of	extremely	low-quality	content	under	
real	scenarios	with	complex	degradations.	
Recovering	highly	damaged	content	could	not	only	
improve	the	visual	quality	but	also	bring	a	new	high-
level	understanding	of	the	content	and	benefit	many	
downstream	applications.	The	second	opportunity	is	

to	design	models	that	highly	depend	on	the	
hardware.	Such	a	strategy	could	enable	hardware-
dependent	optimizations	and	make	full	use	of	the	
hardware	to	achieve	higher	quality	improvements.	
In	the	future,	we	will	focus	on	these	proposed	
opportunities	and	design	practical	solutions	to	
restoration	in	more	industrial	deployment	scenarios.	
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