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Goal,	Applications	and	Potential	
Impact	to	Clinical	Practice	
 

Artificial	Intelligence	(AI)	provides	
considerable	support	to	healthcare	processes,	
allowing	for	the	development	of	advanced	
technologies	for	improving	the	quality	and	

personalization	of	medical	care	provided	to	
patients.	In	the	field	of	medical	imaging,	this	has	
made	it	possible	to	develop	and	implement	
numerous	tools	that	support	physicians	in	
different	tasks	of	the	treatment	process:	
computer-assisted	segmentation,	support	for	
diagnosis,	assessment	of	response	to	treatment,	

and	predictive	models	based	on	radiomics	[1].	For	
these	reasons,	computer-assisted	image	analysis	
is	considered	an	essential	tool	in	the	clinical	
workflow.	

Despite	the	increasing	diffusion	of	
Information	and	Communication	Technologies	
(ICT)	in	medicine,	some	medical	activities	are	still	
performed	manually.	Manual	procedures	are		

	

	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
highly	dependent	on	the	experience	of	the	physician.	
Therefore,	the	operator-dependence	is	a	strong,	
critical	issue	in	terms	of	reproducibility	and	
repeatability	of	results:	in	fact,	considerable	intra-	

and	inter-operator	variability	may	seriously	affect	
the	results. 

In	 this	 scenario,	 computer-assisted	approaches	–	
i.e.,	 automatic	 or	 semi-automatic	 region	 of	 interest	
(ROI)	segmentation	based	on	AI	techniques	allow	us	
to	mitigate	some	of	the	limitations	typical	of	manual	
procedures.	 In	 fact,	 AI	 can	 offer	 clinical	 tools	 that	

allow	 us	 to	 reduce	 inter-	 and	 intra-observer	
dependence	 and	 improve	 the	 repeatability	 of	 the	
results.	 In	 particular,	 AI	 applied	 to	 clinical	 decision	
support	systems	(CDSS)	could	help	doctors	during	all	
the	stages	of	the	healthcare	processes,	from	diagnosis	
to	 treatment	 planning,	 as	 well	 as	 support	 for	 the	
prognosis.	

In	what	follows,	three	aspects	characterized	by	
a	potentially	high	impact	in	the	definition	and	

implementation	of	effective	clinical	tools	will	be	
analyzed	in	the	context	of	medical	imaging:	(i)	
radiomics-powered	predictive	models,	with	the	goal		
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of	offering	solutions	in	the	clinical	practice;	(ii)	
computer-assisted	ROI	detection	and	
segmentation,	for	dealing	with	result	repeatability	
and	accelerating	the	annotation	of	large-scale	

datasets,	and	(iii)	feature	robustness	and	
reliability,	which	are	fundamental	aspects	to	
define	solid	biomarkers	to	be	adopted	by	AI-based	
clinical	tools	[2].	

The	general	scheme	for	robust	biomarker	
discovery	is	outlined	in	Figure	1.	

	

Figure	1.	Key	aspects	for	robust	biomarker	discovery:	(i)	
radiomics-powered	predictive	models;	(ii)	computer-assisted	

ROI	detection	and	segmentation;	(iii)	feature	robustness	and	

reliability.	

	

Radiomics-Powered	Predictive	
Models	
	

Radiomics	involves	the	extraction	of	
mineable	features	from	medical	images	to	non-
invasively	characterize	the	in	vivo	phenotype	of	

lesions	or	even	simply	of	tissue	portions	(e.g.,	the	
apparently	normal	tissue	surrounding	a	tumor),	
capturing	the	ROI	characteristics.	These	can	be	
morphometric	measurements	(size,	shape,	and	
diameter)	or	texture	heterogeneity	measurements	
of	tissues	[3],	[4].	Starting	from	an	input	ROI,	the	
radiomic	features	can	be	calculated	in	two	
manners:	(i)	voxel-based	extraction	(for	each	

feature,	a	value	is	computed	for	each	voxel,	thus	
yielding	feature	maps	as	output),	and	(ii)	
segment-based	extraction	(a	single,	aggregated	
value	per	feature	is	computed	for	each	ROI).	

In	[5]	a	study	is	proposed	to	develop	and	
validate	a	radiomic	model,	with	radiomic	features		

	

	

	

	
	

extracted	from	breast	Dynamic	Contrast-Enhanced	
Magnetic	Resonance	Imaging	(DCE-MRI),	for	the	
prediction	of	mass-enhancement	lesion	malignancy.	

A	total	of	107	radiomic	features	were	extracted	from	
a	manually	annotated	dataset	of	111	patients,	which	
was	split	into	discovery	and	test	sets.	A	feature	
calibration	and	pre-processing	step	was	performed	
to	find	only	robust	non-redundant	features.	An	in-
depth	discovery	analysis	was	performed	to	define	a	
predictive	model:	for	this	purpose,	a	Support	Vector	
Machine	(SVM)	was	trained	in	a	nested	5-fold	cross-

validation	scheme,	by	exploiting	several	
unsupervised	feature	selection	methods.	The	
predictive	model	performance	was	evaluated	in	
terms	of	Area	Under	the	Receiver	Operating	
Characteristic	(AUROC),	specificity	and	sensitivity,	
by	considering	the	held-out	set.	The	model	
combining	Unsupervised	Discriminative	Feature	
Selection	(UDFS)	and	SVMs	on	average	achieved	the	

best	performance	on	the	blinded	test	set:	AUROC	=	
0.725±0.091,	sensitivity	=	0.709±0.176	and	
specificity	=	0.741±0.114.	The	experimental	findings	
demonstrate	that	the	radiomic	predictive	model	
based	on	breast	DCE-MRI,	using	only	the	strongest	
enhanced	phase,	got	promising	results	in	terms	of	
accuracy	and	specificity	in	the	differentiation	of	

malignant	from	benign	breast	lesions.	
The	predictive	capabilities	of	radiomic	models	

can	be	useful	both	in	diagnosis,	as	observed	in	
previous	work,	but	also	in	prognosis,	i.e.,	in	terms	of	
treatment	response	prediction.	Pathological	
response	to	neoadjuvant	treatment	for	patients	with	
high-grade	serous	ovarian	carcinoma	(HGSOC)	was	
assessed	using	the	chemotherapy	response	score	

(CRS)	for	omental	tumor	deposits.	The	main	
limitation	of	CRS	is	that	it	requires	surgical	sampling	
after	initial	neoadjuvant	chemotherapy	(NACT)	
treatment.	Earlier	and	non-invasive	response	
predictors	could	improve	patient	stratification.	To	
this	end,	Computed	Tomography	(CT)	radiomic	
features	were	adopted	to	predict	neoadjuvant	
response	before	NACT	using	CRS	as	a	gold	standard.	

In	[6]	omental	CT-based	radiomics	models,	yielding	a	
simplified	fully	interpretable	radiomic	signature,	
were	developed	using	Elastic	Net	logistic	regression	
and	compared	to	predictions	based	on	omental	
tumor	volume	alone.	Models	were	developed	on	a	
single	institution	cohort	of	neoadjuvant-treated		
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HGSOC	(n	=	61;	41%	complete	response	to	NCT)	
and	tested	on	an	external	test	cohort	(n	=	48;	21%	

complete	response).	The	performance	of	the	
comprehensive	radiomics	models	and	the	fully	
interpretable	radiomics	model	was	significantly	
higher	than	volume-based	predictions	of	response	
in	both	the	discovery	and	external	test	sets,	
indicating	high	generalizability	and	reliability	in	
identifying	non-responders	when	using	radiomics.	

Interestingly,	the	performance	of	a	fully	
interpretable	model	was	similar	to	that	of	
comprehensive	radiomics	models.	

	

Computer-Assisted	ROI	
Detection	and	Segmentation	
	

Radiomic	image	analysis	relies	upon	
quantitative	features	from	medical	images.	The	
resulting	quantitative	models	exploit	these	data	
for	classification,	prediction,	prognostication	and	
treatment	response	may	be	built.	To	this	end,	the	
tumor	has	to	be	segmented,	which	is	mostly	

performed	manually	by	the	radiologist.	This	
variability	among	readers	is	often	recognized	as	a	
source	of	potential	problems,	as	variability	among	
readers	leads	to	undermining	the	repeatability	of	
results.	Some	relevant	case	studies	will	be	
outlined	in	what	follows.	

Prostate	cancer	is	the	most	common	
malignant	tumor	in	men	but	reliable	prostate	

Magnetic	Resonance	Imaging	(MRI)	analysis	
remains	challenging.	Besides	whole	prostate	gland	
segmentation,	the	capability	to	differentiate	
between	the	blurry	boundary	of	the	Central	Gland	
(CG)	and	Peripheral	Zone	(PZ)	can	lead	to	
differential	diagnosis,	since	the	frequency	and	
severity	of	tumors	differ	in	these	regions.	To	
tackle	the	prostate	zonal	segmentation	task,	in	[7]	

a	novel	Convolutional	Neural	Network	(CNN),	
called	USE-Net,	which	incorporates	Squeeze-and-
Excitation	(SE)	blocks	into	a	standard	U-Net,	was	
proposed.	The	SE	blocks	were	added	after	every	
Encoder	(Enc	USE-Net)	or	Encoder-Decoder	block	
(Enc-Dec	USE-Net).	This	study	evaluated	the	
generalization	ability	of	CNN-based	architectures	

on	three	T2-weighted	MRI	datasets,	each	one	
consisting	of	a	different	number	of	patients	and		

	

	

	

	

	
heterogeneous	image	characteristics,	collected	by	
different	institutions.	The	following	mixed	scheme	
was	used	for	training/testing:	(i)	training	on	either	
each	individual	dataset	or	multiple	prostate	MRI	

datasets	and	(ii)	testing	on	all	three	datasets	with	all	
possible	training/testing	combinations.	USE-Net	was	
compared	against	three	state-of-the-art	CNN-based	
architectures,	along	with	a	semi-automatic	
continuous	max-flow	model.	The	results	showed	that	
training	on	the	union	of	the	datasets	generally	
outperforms	training	on	each	dataset	separately,	

allowing	for	both	intra-/cross-dataset	
generalization.	Enc	USE-Net	showed	good	overall	
generalization	under	any	training	condition,	while	
Enc-Dec	USE-Net	remarkably	outperformed	the	
other	methods	when	trained	on	all	datasets.	These	
findings	reveal	that	the	SE	blocks’	adaptive	feature	
recalibration	provided	excellent	cross-dataset	
generalization	when	testing	is	performed	on	samples	

of	the	datasets	used	during	training.	Therefore,	we	
should	consider	multi-dataset	training	and	SE	blocks	
together	as	mutually	indispensable	methods	to	draw	
out	each	other’s	full	potential.	In	conclusion,	
adaptive	mechanisms	(e.g.,	feature	recalibration)	
may	be	a	valuable	solution	in	medical	imaging	
applications	involving	multi-institutional	settings.	

As	further	development,	the	very	recent	Focus	

U-Net	[8]	combined	efficient	spatial	and	channel	
attention	into	a	Focus	Gate.	Focus	U-Net	was	applied	
to	polyp	segmentation	during	colonoscopy,	by	
outperforming	state-of-the-art	results	across	five	
public	polyp	datasets.	Moreover,	loss	functions	play	
a	crucial	role	for	class-imbalanced	medical	imaging	
datasets.	Therefore,	the	novel	Unified	Focal	loss,	
which	generalizes	Dice	and	cross-entropy	based	loss	

functions,	was	recently	introduced	[9].	
Regarding	classic	Machine	Learning	techniques,	

there	are	still	highly	relevant	and	successful	case	
studies.	

Multiparametric	Magnetic	Resonance	Imaging	
(MRI)	is	the	most	sensitive	imaging	modality	for	
breast	cancer	detection	and	is	increasingly	playing	a	

key	role	in	lesion	characterization.	In	this	context,	
accurate	and	reliable	quantification	of	the	shape	and	
extent	of	breast	cancer	is	crucial	in	clinical	research	
environments.	

Since	conventional	lesion	delineation	
procedures	are	still	mostly	manual,	automated		
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segmentation	approaches	can	improve	this	time-
consuming	and	operator-dependent	task	by	

annotating	the	regions	of	interest	in	a	
reproducible	manner.	

In	[10]	,	a	semi-automated	and	interactive	
approach	based	on	the	spatial	Fuzzy	C-Means	
(sFCM)	algorithm	is	proposed,	used	to	segment	
masses	on	dynamic	contrast-enhanced	(DCE)	MRI	
of	the	breast.	This	method	was	compared	against	

existing	approaches	based	on	classic	image	
processing,	namely	(i)	Otsu's	method	for	
thresholding-based	segmentation,	and	(ii)	the	
traditional	FCM	algorithm.	A	further	comparison	
was	performed	against	state-of-the-art	CNNs	for	
medical	image	segmentation,	namely	SegNet	and	
U-Net,	in	a	5-fold	cross-validation	scheme.	The	
results	showed	the	validity	of	the	approach,	by	

significantly	outperforming	the	competing	
methods	in	terms	of	the	Dice	similarity	coefficient	
(84.47±4.75).	A	Pearson's	coefficient	of	⍴=0.993	
showed	a	high	correlation	between	segmented	
volume	and	the	gold	standard	provided	by	
clinicians.	Therefore,	such	a	computer-assisted	
approach	could	be	deployed	into	clinical	research	
environments	by	providing	a	reliable	tool	for	

volumetric	and	radiomics	analyses.	

	

Feature	Robustness	and	
Reliability	
	

Although	radiomic	features	are	well-
established,	there	are	still	serious	concerns	about	
their	stability	and	robustness.	Indeed,	radiomic	
features	are	often	not	robust	against	medical	
image	acquisition	parameters,	such	as	spatial	
resolution	(i.e.,	in-plane	resolution	and	slice	
thickness,	the	latter	also	known	as	through-plane	
resolution)	and	image	extraction	settings	(e.g.,	

intensity	quantization,	voxel	resampling).	

Robust	Machine	Learning	models	based	on	
radiomic	features	allow	us	to	obtain	biomarkers	
that	are	capable	of	modeling	the	disease	and	are	
able	to	support	medical	decision-making	tasks,	
from	diagnosis	to	prognosis.	Recent	studies	have	
shown	that	it	is	fundamental	that	the	computed	
features	are	robust	and	reproducible.	Although	

several	initiatives	to	standardize	the	definition		

	

	

	

	

	
and	extraction	process	of	biomarkers	are	ongoing,	
there	is	a	lack	of	comprehensive	guidelines.	
Therefore,	no	standardized	procedures	are	yet	
available	for	ROI	delineation,	feature	extraction,	and	

processing,	with	the	risk	of	undermining	the	
effective	use	of	radiomic	models	in	clinical	routine.		

This	kind	of	achievement	could	be	realized	by	
combining	classic	Machine	Learning	techniques	with	
the	latest	advances	in	Deep	Learning.	For	instance,	in	
[11],	the	authors	propose	a	Generative	Adversarial	
Network	(GAN)-based	lesion-focused	framework	for	
CT	image	Super-Resolution	(SR);	for	the	lesion	(i.e.,	

cancer)	patch-focused	training,	a	Spatial	Pyramid	
Pooling	(SPP)	was	incorporated	into	GAN-
Constrained	by	the	Identical,	Residual,	and	Cycle	
Learning	Ensemble	(GAN-CIRCLE).	At	2×	SR,	the	
proposed	model	achieved	better	perceptual	quality	
with	less	blurring	than	the	other	considered	state-of-
the-art	SR	methods,	while	producing	comparable	
results	at	4×	SR.	Interestingly,	the	robustness	of	the	

radiomic	features	was	evaluated	in	terms	of	
quantization	on	a	different	lung	cancer	CT	dataset	
using	Principal	Component	Analysis	(PCA).	Relying	
upon	this	analysis,	the	most	important	radiomic	
features	in	the	conducted	PCA-based	analysis	were	
the	most	robust	features	extracted	on	the	GAN-
super-resolved	images.	These	achievements	pave	the	
way	for	the	application	of	GAN-based	image	Super-

Resolution	techniques	for	studies	of	radiomics	for	
robust	biomarker	discovery.	

In	[12],	the	aim	was	to	assess	the	impact	that	
the	different	segmentation	methods	and	the	
quantization	level	(defined	by	means	of	the	number	
of	bins	used	in	the	feature-extraction	phase)	may	
have	on	the	robustness	of	the	radiomic	features.	In	
particular,	the	robustness	of	texture	features	

extracted	by	the	PyRadiomics	tool,	and	belonging	to	
five	categories	–	namely,	GLCM,	GLRLM,	GLSZM,	
GLDM,	and	NGTDM	–	was	evaluated	using	the	intra-
class	correlation	coefficient	(ICC)	and	mean	
differences	between	segmentation	raters.	In	addition	
to	the	robustness	of	each	single	feature,	an	overall	
index	for	each	feature	category	was	quantified.	The	
analysis	showed	that	the	level	of	quantization	(i.e.,	

the	‘bincount’	parameter)	plays	a	key	role	in	defining	
robust	features:	in	fact,	in	our	study	focused	on	a	
dynamic	contrast-enhanced	magnetic	resonance	
imaging	(DCE-MRI)	dataset	of	111	breast	masses,		
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sets	with	cardinality	varying	between	34	and	43	
robust	features	were	obtained	with	`binCount'	
values	equal	to	256	and	32,	respectively.	
Moreover,	both	manual	segmentation	methods	

demonstrated	good	reliability	and	agreement,	
while	automated	segmentation	achieved	lower	
ICC	values.	Considering	the	dependence	on	the	
quantization	level,	taking	into	account	only	the	
intersection	subset	among	all	the	values	of	
‘binCount’	could	be	the	best	selection	strategy.	
Among	radiomic	feature	categories,	GLCM,	
GLRLM,	and	GLDM	showed	the	best	overall	

robustness	by	varying	segmentation	methods.	

	
Concluding	Remarks	
	

In	conclusion,	radiomics	enables	
considerable	support	for	clinical	routines	by	
providing	tools	that	can	aid	clinicians'	decision-
making	pipeline	at	various	levels,	from	diagnosis	
to	prognosis,	as	well	as	treatment	support.	
Automatic	ROI	detection,	reduction	of	intra/inter-
reader	variability,	ensuring	repeatability	of	
results,	and	optimal	setting	in	order	to	extract	

robust	and	descriptive	features	are	just	some	of	
the	issues	that	need	to	be	addressed	

These	issues	have	been	carefully	addressed	
by	the	Image	Biomarker	Standardization	Initiative	
[13],	which	aimed	at	providing	standardized	
definitions,	and	recommended	how	to	implement	
the	different	steps	of	a	radiomic	workflow,	
including	data	conversion	in	standardized	units,	

post-acquisition	image	processing,	image	
segmentation,	data	interpolation,	resegmentation	
(i.e.,	procedure	that	involves	only	the	pixels	within	
a	specified	gray-value	range	for	radiomic	feature	
calculation	within	the	ROI),	and	intensity	
quantization.	However,	the	scientific	community	
has	to	devote	further	attention	to	effectively	
translating	this	effort	into	the	clinical	routine.	
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